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Abstract 

As E-learning initiatives are increasingly being deployed in educational and 

corporate training settings to revamp work-place productivity through life-long 

learning, concerns related to instructional design quality among stakeholders are 
equally growing. Thus, the overriding objective of the study was to carry out 

initial screening and preliminary analysis of the data related to the causal 

influence of instructional design quality on learner satisfaction and continuance 
learning intention. Based on the survey design, the quantitative data were 

collected from 837 students across ten CISCO Networking academies in Uganda. 

Descriptive statistics, multiple regression and factor analysis techniques were 
employed to address the purpose of the study. Primary attention was paid to the 

assumptions of response rate, missing data, outliers, data normality, 

multicollinearity, homoscedasticity and common method bias. The results of the 

initial screening and preliminary data analysis revealed non violation of 
prerequisite multivariate assumptions. The findings have provided empirical 

evidence on the psychometric study of which the instrument can be further used 

for future research. The steps taken for the analysis have provided a benchmark 
of audit trail in the methodology and statistical analysis for the replication of the 

study. 

Keywords: instructional design quality, CISCO E-learning in Uganda, 

learner satisfaction, continuance learning intention, data screening and 
preliminary analysis 

Data screening and the subsequent preliminary analysis procedures are 

of essence in order to avert any violations of the fundamental assumptions of 
multivariate data analysis (Won, Wan, & Sharif, 2017; Hair, Hult, Ringle, & 

Sarstedt, 2013; Ibrahim & Mohd Noor, 2014). In other words, failure to meet the 

prerequisite assumptions or to detect and correct errors in the data will result into 
distorted results from the analysis (Hair et. al, 2010; Pallant, 2007). If well 

conducted therefore, preliminary data analysis will ensure that the relationships 
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between the constructs are able to guarantee good data output, and above all 

satisfy the assumptions of multivariate data analysis (Aliyu, Rosmain, & Takala, 
2014; Hair et al, 2010). Alanazi (2016) has noted that if valid inferences are to be 

drawn from statistical test results with a fair degree of accuracy, the essential 

assumptions of multivariate data analysis must not be violated. Thus, initial data 

screening and preliminary data analysis are vital to identify and mend or at least 
minimise the methodological errors and their associated effect on the study 

results. It is worth noting therefore,  in the process of carrying out inferential 

statistical analysis for hypothesis testing, satisfactory conclusions can only be 
made when the assumptions guiding a particular statistical analysis approach  are 

met and sound (Maiyaki, 2012; Cruz, 2008). To that end, issues related to the  

assessment and treatment  of (i) response rates, (ii) missing values, (iii) univariate 
and multivariate outliers, (iv) data normality, (v) multicollinearity, (vi) 

homoscedasticity, (vii) common method bias, and (viii) underlying factor 

structure are central to data screening (Hair, Black, Babin, & Anderson, 2016; 

Podsakoff, MacKenzie, Lee, & Podsakoff, 2003; Tabachnick & Fidell, 2001).   

Statement of the Problem 

Quantitative data screening, cleaning as well as its preparation for 

preliminary analysis is an essential raw material for conducting further 
multivariate analysis in a quantitative study that employs inferential statistics 

(Ibrahim & Mohd Noor, 2014). Particularly, the data screening and preliminary 

analysis procedures are useful to detect and address likely violations of the 
established assumptions associated with various multivariate statistical 

techniques. Besides, the research is able to have a clear understating of the 

quantitative data and achieve accuracy and consistency in the process of analysis 

(Kura, Faridahwati, & Chauhan, 2014). However, this important step has so far 
received less attention in the domain of E-learning Instructional design and end-

user satisfaction literature. The issue is even more pronounced among novice 

researchers, perhaps because of the burden related to it (Abdulwahab, Dahalin, & 
Galadima, 2011; Hair, et al, 2010;  Pallant, 2007). As Alanazi (2016) and Ibrahim 

and Mohd Noor (2014) have warned, ignoring this step no doubt affects the 

quality of the analysis results and consequently the inferences that are drawn. This 

is basically because the standard error estimates will tend to be inflated (Chernick, 
2008 as cited in  Kura et al., 2014), which inevitably will affect the statistical 

significance of the regression path coefficients and the predictive power of the 

outcomes in the analysis (Muazu & Siti, 2014; Hair et al., 2013). Thus, there is 
an urgent need to evaluate the quantitative data using diverse statistical tools so 

that established assumptions are not violated. Specifically, issues relating to 

response rates, missing values, outliers, data normality, multicollinearity, 
homoscedasticity, and common method bias are addressed. 

Objectives of the Study 

In light of the foregoing concerns, this paper set to examine the data 

screening and preliminary analysis procedures applied to ascertain E-learning 
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instructional design quality, learner satisfaction and continuance learning 

intention constructs. The specific objectives were as to: 
i. examine the extent to which the E-learning instructional design quality, 

learner satisfaction and continuance learning intention data meets the 

essential assumptions multivariate analysis. 

ii. establish the underlying factor structure of the E-learning instructional design 
quality, learner satisfaction and continuance learning intention constructs. 

Literature Review 

Given the increasing need to support work-place productivity through 
life-long learning, E-learning has increasingly become a household brand in both 

educational and corporate training. It is no doubt that such increased deployment 

of E-learning initiatives is equally raising concerns related to instructional design 
quality among stakeholders. Issues are even complicated further by the absence 

of a consensual understanding on what actually constitutes E-learning 

instructional design quality. As a consequence, different stakeholders have 

understood and hence conceptualised E-learning instructional design quality 
based on their philosophical thoughts regarding human learning. A case in point, 

Karla (2016) has conceptualised E-learning instructional design quality on the 

basis effectiveness and efficiency. To Karla (2016), the effectiveness of E-
learning pays attention to the extent to which the instruction enables learners  

realise the intended learning goals. On the other hand, efficiency focuses on the 

time and energy that learners invest to accomplish the instructional session. 
According to Quality Matters Program (2013), E-learning quality is all about 

issues of alignment. That is to say, the congruence of learning objectives, learning 

content, measurement and assessment, interactivity, course technology and 

engagement to enable the realisation of learning outcomes is what denotes E-
learning quality. ASTD (2001) on the other hand has argued that the ability of E-

learning to provide right learning content at the right time, foster mastery of 

knowledge and skills necessary for improved personal and organizational 
productivity  are what constitutes quality E-learning. 

From the foregoing conceptualisations of E-learning quality, it can be 

argued therefore that E-learning quality is a multidimensional concept. For 

example, the iNACOL National Standards for Quality Online Courses has 
classified E-learning quality in terms of instructional design, content, assessment, 

course evaluation and support and technology (INACOL, 2011). Yet according 

to Quality Matters Program (2013) eight component indicators constitute E-
learning quality, namely: overview and introduction, learning objectives, 

instructional materials, assessment and measurement, learner interaction and 

engagement, learner support, accessibility and course technology. In the current 
study however, attention was paid to three key E-learning instructional design 

quality sub dimensions of interface design quality, content quality and 

instructional strategies from a synthesis of the classifications by INACOL (2011) 

and Quality Matters Program (2013). An evaluation of E-learning instructional 
design quality is vital because as learners and instructors tend to be separated in 
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digital learning spaces, the instructional design attributes inherent in  the E-

learning course will be significant predictors of learning effectiveness, 
persistence and satisfaction rather than the delivery medium (Ally, 2004). Thus, 

the instructional design qualities of E-learning courses have been hypothesized to 

have a statistically significant influence on learner satisfaction and continuance 

learning intention. 

Methodology 

Participants and Procedures 

This cross-sectional survey was based on a stratified random sampling of 
900 E-learners who were selected from a population of 5239 across ten CISCO 

academies in Uganda. According to Krejcie and Morgan (1970)’s Table for 

sample size determination, a sample of 361 would be sufficient from the 
population of 5239 respondents. However, given the fact that the larger the 

sample size, the more confidence the researcher has with regard to 

generalisability of results, a sample size of 900 respondents was taken. Thus, a 

self-administered questionnaire was employed to collect data regarding the 
respondents’ background variables, as well as their perceptions on E-learning 

instructional design quality, satisfaction and continuance learning intention. 

Measures 
In order to accomplish the study objectives, a 41-item questionnaire was 

used for data collection to assess instructional design quality, learner   satisfaction 

and continuance learning intention with E-learning courses. The measurement 
items used were drawn and adapted from literature review of empirical studies on 

E-learning instructional design, learner satisfaction and continuance use 

intention. Specifically, the measurement items were adapted from Clawson, 

(2007), Georgiadou, Economides, Michailidou, and Mosha, (2001), Wang, 
Wang, and Shee, (2007), Bhattacherjee, (2001), and Bhattacherjee, Perols, and 

Sanford, (2008). The measurement items were then content-validated by six 

Experts in Instructional Technology and Research Methodology, and thereafter 
subjected to a pilot study before being used in the final study. 

Instructional design quality. Three sub dimensions of content quality, 

interface design quality and instructional strategies were used to assess the 

instructional design quality construct. Learners rated the interface design quality 
of the E-learning courses using 8 items; while 9 items were used to measure 

content quality; both of which were based on a five response category Likert 

scale, i.e. “Strongly agree”, “Agree”, “Neutral”, “Disagree” and “Strongly 
disagree”. On the other hand, 12 items were used to examine instructional 

strategies in the E-learning courses based on the response category of “Never”, 

“Rarely”, “Sometimes”, “Often”, and “Always”. The reliability indices for 
interface design quality, content quality, instructional strategies were Cronbach’s 

alpha= .849, .869, and .902 respectively. 
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Learner satisfaction. Learner satisfaction with E-learning courses was 

measured using 8 items based on the five-point category of “Strongly agree”, 
“Agree”, “Neutral”, “Disagree” and “Strongly disagree”; with the reliability 

index for the dimension being Cronbach alpha=.814. 

Continuance learning intention. E-learners reported their intentions to 

continue learning with E-learning courses using 5 items with a reliability index 
of alpha=.854. The five measurement items were based on a five response 

category Likert scale, of “Strongly agree”, “Agree”, “Neutral”, “Disagree” and 

“Strongly disagree”. 

Data Analysis Procedures 

This study applied both univariate and multivariate data analysis techniques in 

fulfilment of the study purpose based on SPSS version 22.0. Specifically, 

descriptive statistics via frequency counts and percentages were used to examine 

the response rate, missing data and normality. From the multivariate data analysis 

perspective, multiple regression analysis was applied to detect and understand 

outliers, homoscedasticity and multicollinearity. Lastly, Exploratory Factor 

Analysis was used to establish the underlying structure of both the exogenous 

constructs and endogenous constructs; and eventually establish the existence of 

any common method bias.  

Results 

Sample Characteristics 

As summarised in Table 1, male learners who took part in the study 

constituted over 60% (506/837) as compared to the females who trailed with 
almost 40% (331/837). In addition, learners who rated their ICT use experience 

as being at beginner and advanced levels made up around 22% respectively. Yet 

the largest portion of students constituting 56% (468/837) rated their ICT 
knowledge level as intermediate. In terms of levels of ICT self-efficacy, almost 

40% of the learners reported their ICT self-efficacy level as being good. This is 

trailed by those who perceived their ICT self-efficacy as being very good (28%), 

satisfactory (22%) and those who rated themselves as having excellent levels of 
ICT self-efficacy were merely at 10%. Lastly, 78% (651/837) of the E-learners 

were taking the CCNA course, while 22% (186/837) were offering other E-

learning courses of CCNP, IT Essentials and Cyber Security. 
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Table 1  

Analysis of Learner Demographic Attributes 

Characteristic Category Frequency % 

Gender    

 Male  506 60.5 

 Female 331 39.5 
CISCO course enrolled    

 IT Essentials 83 10.3 

 CCNA 621 77.1 
 CCNP 67 8.3 

 Cyber Security 30 3.7 

 Other 4 0.5 

ICT use experience    
 Beginner 185 22.1 

 Intermediate 468 55.9 

 Advanced 184 22.0 
Level of ICT Self-efficacy    

 Excellent 86 10.3 

 V. Good 234 28.0 

 Good 336 40.1 
 Satisfactory 181 21.6 

Response Rate 
A clear breakdown of data from a survey is vital so as to assess if the 

questionnaires gathered the information that is critical to the analysis process 
(Hair et al. 2010). Hamilton (2009) as cited in Won, Wan and Sharif (2017), has 

defined response rate as being the segment of the participants who actually 

responded to the items in a study in relation  to the sample size.  

Table 2 
Questionnaire Distribution and Return Rates 

Item Frequency % 

Questionnaires Distributed  900 100 

Questionnaires Returned  864 96 

Incomplete Questionnaires 27 3 

Questionnaires captured for analysis 837 93 

As summarised in Table 2, nine hundred questionnaires were sent out to 
students in ten CISCO Networking academies in Uganda. Returns from the 

survey instruments revealed that a total of 864 students had actually responded to 

the survey; of which, 27 were found to be incomplete and thus not captured into 
SPSS. The actual data analysis therefore made use of 837 questionnaires that were 
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considered valid, accounting for 93% of response rate. In light of the 

recommendations by Sekaran and Bougie (2010) and Chatman (2007) that a study 
with a response rate of 30% or greater is considered acceptable, the current study 

did not violate assumptions regarding  response rates. 

Assessment of Missing Data 

Instances of missing data arise either due to participants failing to 
respond to questionnaire item(s) or because of errors made during data entry, all 

of which may make the data unsuitable for final analysis (Won et al., 2017; Hair 

et al., 2010). Missing data in the current study were detected using frequency 
counts and percentages under descriptive analysis with SPSS version 20.0. 

Variables that had missing values were referenced to the respective questionnaire 

to establish if errors were made at data entry stage and corrected. But for 
questionnaire items where the participants did not supply the required responses, 

the SPSS Missing value analysis tool was used to do further assessment. Although 

there seems to be no universally agreed upon position on the cut-off percentage 

for missing data, Hair et al. (2010) and Bennett (2001) have suggested that 
missing values of 10% or less are not a big problem to final statistical analysis. 

In a related instance, Schafer (1999) has argued that missing values of 5% or less 

are not a threat to further data analysis. In the current study, missing data were 
less than 5% across the items. As recommended by Tabachnick and Fidell (2001), 

the missing values in the study’s data set were handled with the help of the mean 

substitution approach. 

Assessment of Data Normality 

Data normality demonstrates the shape of data distribution for metric 

variables (Hair, et al, 2010). The assumption of data normality in this study was 

detected by examining the shape of the graphical data distribution (Tabachnick & 
Fidell, 2001), and skewness and kurtosis (Pallant, 2007). Specifically, data 

normality was detected with the help of the graphical Normal P-P plot and 

Histogram method using linear regression. As depicted in Figure1, the variance 
followed along the normal straight line, hence providing evidence that residual 

error terms are expected to exhibit a normal distributed. Additionally, Figure 2 

shows normal distribution of standard errors. In light of the suggestions by  Kim 

(2013), the skewness and kurtosis values were seen to be within the range of 2 
and 5 respectively, the implication being that the data in the current study 

demonstrated an  approximately normal distribution. 
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Figure 1. Normal P-P plot of 

Regression Standardized Residual 

 
Figure 2. Histogram for normal 

distribution of the Standardized 

Residuals 

Detection of Outliers 

According to Hair, Black and Anderson (2010), outliers are scores that 

are not consistent with the rest of the data and are likely to affect the efficacy of 

multivariate analysis. Detecting and managing outliers is an essential activity as 
they tend to affect regression co-efficient estimates, hence leading to unreliable 

results (Verardi and Croux, 2009). Mahalanobis Distance (D2) was used to detect 

multivariate outliers in the current study and then elimination was based on the 
critical values and significance levels. Data assessment identified that 32 cases 

exhibited outliers with Mahalanobis Distance values that were greater 18.47. 

Moreover, the 32 cases with outliers were accompanied with significance level 
of p<.001. The 32 cases with outliers had to be eliminated given the fact that 

outliers could easily compromise the results multivariate analysis. In the final 

analysis, the final dataset that could be applied in future for analysis now had 805 

participants. 

Examination of Homoscedasticity 

Homoscedasticity is concerned with the variance of residuals on the 

predicted endogenous variable scores, which ideally are expected to indicate a 

similar pattern across all variables to be predicted (Pallant, 2007; Hair et al., 

2010). In this study, the Koenker heteroscedasticity test was applied to check for 

the assumption of homogeneity of the residuals (Pryce, 2002). Accordingly, the 

result of the Koenker test was non-significant (p=.111,>.05). Thus, the null 
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hypothesis that the data are not heteroscedastic was accepted, implying non-

violation of the assumption of homoscedasticity.  

Evaluation of Multicollinearity and Linearity 

Multicollinearity is an indication of the extent to which a variable is 

explained by other variables in a given study (Kline, 2016). Two common 
diagnostic tools of Variance Inflation Factor (VIF) and Tolerance are essential 

for checking for multicollinearity (Hair et al., 2010; Kline, 2016). The Tolerance 

value gives an indicator of how much of the variability an exogenous variable is 
not explained by other exogenous variables in the analysis. Yet VIF is simply the 

inverse of Tolerance. According to Table 3, VIF values range between 1.923 and 

2.342 (<10); and the Tolerance values were between 0.427 and 0.468 (>0.10), 

and indeed all are within the acceptance limits.  

Table 3 

Linearity and Multicollinearity Diagnostics for the Constructs 

  CLI ContQ IntfQ Instr Sat Collinearity 

Statistics 

       Tolerance VIF 

Pearson 
Correlation 

CLI        

ContQ .443     .468 2.137 

IntfQ .441 .651    .457 2.187 

Instr .492 .645 .669   .427 2.342 
Sat .641 .598 .579 .637  .520 1.923 

Sig.  

(1-tailed) 

CLI        

ContQ .000       

IntfQ .000 .000      
Instr .000 .000 .000     

Sat .000 .000 .000 .000 .   

To that effect, the results in the current study have demonstrated non-
violation of Multicollinearity assumptions among the exogenous and endogenous 
variables. Additionally, the linearity statistics in Table 3 have further indicated 

positive and statistically significant relations among the constructs. 

Exploratory Factor Analysis for Exogenous Variable 

In pursuit of the data screening process, Exploratory Factor Analysis 
(EFA) in SPSS Version 20.0 was conducted on the 29 items used to measure the 

instructional design quality constructs. Moreover, Promax was chosen as the 

rotation method given that the expected components were assumed to be 
theoretically related (Matsunaga, 2011). To ensure that the data met the minimum 

requirements for Factor Analysis, the Kaiser-Meyer-Olkin Measure of Sampling 

Adequacy, Bartlett's Test of Sphericity, correlation matrix and the item 

communalities were first examined. Preliminary results  revealed that the KMO 
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index of 0.957 which was within the threshold of at least 0.7 (Yong and Pearce, 

2013), indicating that the sample was adequate for Factor Analysis. Additionally, 
the Bartlett's Test of Sphericity was significant x2 (1176) =19166.158, p=.000, 

hence supporting the factorability of the correlation matrix. Table 4 gives the 

details of the corresponding factor loadings and communalities. Exploratory 

Factor Analysis revealed three components with Eigenvalues greater than 1, and 
they explained 36.6%, 5.7% and 4.0% of the variance respectively. The three 

components were named as content quality, instructional strategies and interface 

design quality. Lastly,  the quality of the extracted factors in terms of their factor 
loadings was assessed to ensure that items with loadings ≥ 0.5 and with no cross 

loadings were retained (Matsunaga, 2010; Karuthan, 2016). 

Table 4 
Factor Loadings and Communalities for the Exogenous Variables 

Items Content 

quality  

Instructio

nal 

strategies 

Interface 

design 

quality 

Communa

lities 

cp3 Text content .711   .461 

cp4 Lessons notes that are clear .786   .508 

cp5 
Pictures to illustrate the learning 
content 

.716 
  .510 

cp7 
Content uses vocabulary suitable 

to my learning level 
.550 

  .385 

css1 

Provides me with learning 

activities to support the course 

objectives 

.559 

  .386 

css2 
Clearly states the grading method 

to be used 
.549 

  .404 

css3 
Provides me with content that is 

well-organized 
.677 

  .540 

css4 
Breaks down practice activities 
appropriately for ease of my 

understanding 

.699 
  .524 

css5 
provides me with learning 

activities that follow each other 
.599 

  .508 

ts3 Discuss my ideas with my peers  .585  .418 

ts4 
Study real-world problems in 

classroom activities 
 .570 

 .439 

ts5 
Work on assignments that deal 

with real-world information 
 .554 

 .460 

ts8 
Seek my own answers while 

learning 
 .543 

 .426 

ts9 
Solve learning problems I 
encounter 

 .575 
 .428 
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 esd1 

 

Elements for gaining attention 

during learning 

 .779 

  

.559 

esd2 
Lesson activities that increase my 

learning success 
 .772 

 .548 

esd3 
Strategies for stimulating recall 
of my prior information 

 .783 
 .517 

esd4 
Strategies for maintaining 

attention on content being learnt 
 .747 

 .527 

esd5 
Strategies for enhancing learning 

retention 
 .716 

 .490 

esd6 
Elements that maintain my 

motivation during learning. 
 .736 

 .522 

esd7 
Opportunities for practice of 

difficult concepts I learn 
 .650 

 .488 

nav1 
Has navigational tools on all 

pages 
 

 
.603 

.487 

nav2 
Enables me to control my 
learning progress. 

 
 

.624 
.541 

nav3 Has well organized pages   .534 .467 

nav4 Has predictable screen changes   .746 .507 

nav5 

Presents me with a logical 

sequence on how to complete 

tasks 

 

 

.636 

.520 

nav6 Gives me clear page directions.   .665 .553 

nav7 
Allows a new page to open in a 

new browser window 
 

 
.711 

.518 

nav8 
Requires less scrolling no matter 

the screen size used 
 

 
.718 

.436 

Note. Extraction Method: Principal Component Analysis. Rotation Method: Promax 

with Kaiser Normalization. 

Exploratory Factor Analysis for Endogenous Variables 

Table 5 reveals the results of the Factor Analysis for the endogenous 
variables that were measured using 7 and 5 items respectively. Inspection of the 

correlation matrix revealed the presence of many coefficients scoring above 0.3 

but less than 0.9, hence indicating absence of issues related to multicollinearity. 
The result of KMO measure of sampling adequacy was 0.920; while the Bartlett's 

Test of Sphericity was found to be statistically significant which supported the 

correlation matrix (p=0.000).  
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Table 5 

Factor Loadings and Communalities for the Endogenous Variables 

Items Learner 

satisfaction 

Continued 

learning 

intention 

Communali

ties 

sat2 Relevance of learning content .532  .489 

sat3 Knowledge gained from the course .672  .549 

sat4 E-learning course functions .747  .550 

sat5 Learning content quality .749  .539 

sat6 Meeting my learning expectations .797  .600 

sat7 My learning interest in the course .755  .561 

sat8 
Overall learning experience with this 

E-learning course 
.811 

 .551 

cui1 
I would like to take another E-

learning course after this 

 
.730 

.530 

cui2 
I will recommend this E-learning 

course to my friends 

 
.804 

.635 

cui3 

I intend to continue using the E-

learning course for sharing 

knowledge 

 

.843 

.667 

cui4 
I will use the E-learning system on a 

regular basis in the future 

 
.741 

.515 

cui5 

I intend to continue using a related 

E-learning course for life-long 

learning 

 

.725 

.540 

Note. Extraction Method: Principal Component Analysis. Rotation Method: Promax 

with Kaiser Normalization. 

PCA indicated the presence of two components with Eigenvalues 

exceeding 1, which were named learner satisfaction and continuance learning 

intention, and accounted for 45.5% % and 10.2% of the variance in the factor 
solution. 

Common Method Bias 

Common method bias is the kind of bias in a study’s dataset that result 
from some influences that are external to the measures used. For example data 

collection that employs a single common method, such as online survey (Gaskin, 

2017). In this study, Harman's single factor test and common latent factor (CLF) 
were used to check for common method bias (CMB). In the case of the Harman's 

single factor test, all the 41 items measuring instructional design qualities, learner 

satisfaction and continued learning intention where loaded into SPSS and fixed 

to one factor. According to Podsakoff, MacKenzie, Lee, and Podsakoff (2003), 
CMB is evident if one general factor accounts for over 50% of the variance.  

In this study, the variance was 35.4%, which indicated absence of issues 

related to Common method bias. Additionally, results of the CLF method for the 
one factor measurement model in Figure 1 demonstrated poor fit to the data: 
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χ2/df=5.853, CFI=.745, TLI=.731, RMSEA=.078, suggesting that the 

measurement model was inconsistent with the data (Nordin et al., 2016).  

 

Figure 1. One-Factor measurement model for testing common method bias 

Thus, the absence of model fit for the one-factor measurement model and 

35% variance for a single factor all provide evidence that the Common method 

bias was not a threat to the measurement of instructional design qualities, learner 
satisfaction and continuance use intention. 

Conclusion 

This paper has presented the quality of the data on instructional design 
quality, learner satisfaction and continuance learning intention with E-learning 

courses. Many quantitative studies which were based on instructional design 

quality have been found to pay limited attention to data screening, perhaps 

because of the burden associated with procedures involved. However, turning a 
blind eye to the prerequisite initial data screening poses a threat to the results of 

multivariate analysis as the standard error tends to be inflated. The current study 

was therefore timely to shed light on this vital part of multivariate analysis that 
eventually impacts on the quality of inferences drawn from the data. Besides, 

initial data screening has been reported to enhance the researchers' understanding 

of their data characteristics. Upon successful assessment, detection and treatment 

of missing data, outliers, data normality, multicollinearity homoscedasticity, and 
common method bias, the current study has provided evidence that the essential 
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assumptions of multivariate analysis have not been violated. The conclusions on 

the violations of the assumptions were guided by the recommendations offered 
by Hair et. al, (2010); Tabachnick & Fidell (2001); Podsakoff, MacKenzie, Lee, 

and Podsakoff (2003); and Pallant (2007). The quantitative data is therefore fit 

and recommended for further multivariate analysis, including but not limited to 

Confirmatory Factor Analysis, Structural Equation Modeling, Multivariate 
Analysis of Variance, Multiple Regression Analysis techniques. 
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